If x>0 and log3x+log3x+log3x4+.......=4, then x equals
9
81
1
27
Explanation for the correct answer:
Finding the value of x:
Given,
log3x+log3x+log3x4+.......=4log3x+12log3x+14log3x+......=4[∵logxn=nlogx]⇒log3x1+12+14+....=4⇒log3x11-12=4[∵Sn=a1-r,whereaisfirsttermandriscommonratio.]⇒log3x2=4⇒log3x=42⇒log3x=2⇒x=32[∵iflognx=k,thenx=kn]⇒x=9
Hence, the correct option is A.