If x = 0 and x = - 1 are the roots of the polynomial f(x) = 2x3−3x2 + ax + b, find the value of a and b.
f(x) = 2x3−3x2 + ax + b
∵ x = 0 and x = - 1 are its zeros
∴ f (0) = 0 and f(-1) = 0
Now, f(0) = 0
⇒2(0)3−3(0)2+a× 0 + b = 0
⇒ 0 - 0 + 0 + b = 0
∴ b = 0
and f(-1) = 0
⇒2(−2)3−3(−1)2 + a (-1) + b = 0
⇒2×(−1)−3×1+a× (-1) + b = 0
⇒ -2 - 3 - a + b =0
⇒−2−3−a=0⇒ a = - 5
⇒−5−a=0⇒ a = - 5
Hence a = - 5, b = 0