If x≠0and y=loge2x, then dydx is equal to
1x
-1x
±12x
None of these
Explanation for the correct option:
Finding the value of dydx:
Given,
y=loge2x
Case 1:
If x<0,y=loge-2x
On differentiating we get,
dydx=1-2x-2[∵ddxlogx=1x]⇒dydx=1x
Case 2:
If x>0,y=loge2x
dydx=12x2[∵ddxlogx=1x]⇒dydx=1x
From the above two cases dydx=1x.
Hence, the correct option is A.