1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Domain and Range of Basic Inverse Trigonometric Functions
If x < 0, t...
Question
If
x
<
0
, then prove that
cos
−
1
x
=
π
−
sin
−
1
√
1
−
x
2
.
Open in App
Solution
We have for
x
>
0
,
cos
−
1
(
−
x
)
=
π
−
cos
−
1
x
.
The given problem is equivalent to the above i.e. for
x
<
0
,
cos
−
1
x
=
π
−
cos
−
1
x
.
Now the proof for
x
>
0
,
cos
−
1
(
−
x
)
=
π
−
cos
−
1
x
, is as follows
Let,
cos
−
1
(
−
x
)
=
z
or,
−
x
=
cos
z
or,
x
=
−
cos
z
or,
x
=
cos
(
π
−
z
)
or,
π
−
z
=
cos
−
1
x
or,
cos
−
1
(
−
x
)
=
π
−
cos
−
1
x
or,
cos
−
1
(
−
x
)
=
π
−
sin
−
1
√
1
−
x
2
[Since
cos
−
1
x
=
sin
−
1
√
1
−
x
2
for
x
>
0
..]
So for
x
>
0
we have
cos
−
1
(
−
x
)
=
π
−
sin
−
1
√
1
−
x
2
or, for
x
<
0
we have
cos
−
1
(
x
)
=
π
−
sin
−
1
√
1
−
x
2
.
Suggest Corrections
0
Similar questions
Q.
(a) Prove that
sin
[
t
a
n
−
1
1
−
x
2
2
x
+
cos
−
1
1
−
x
2
1
+
x
2
]
=
1
.
(b) If
sin
−
1
(
x
−
x
2
2
+
x
3
4
−
.
.
.
.
.
)
+
cos
−
1
(
x
2
−
x
4
2
+
x
6
4
−
.
.
.
.
.
.
.
)
=
π
2
for
0
<
|
x
|
<
√
2
, then x equals
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a) If
c
o
s
−
1
p
+
c
o
s
−
1
q
+
c
o
s
−
1
r
=
π
, then prove that
p
2
+
q
2
+
r
2
+
2
p
q
r
=
1
(b) If
s
i
n
−
1
x
+
s
i
n
−
1
y
+
s
i
n
−
1
z
=
π
, then prove that
x
4
+
y
4
+
z
4
+
4
x
2
y
2
z
2
=
2
(
x
2
y
2
+
y
2
z
2
+
z
2
x
2
)
(c) If
t
a
n
−
1
x
+
t
a
n
−
1
y
+
t
a
n
−
1
z
=
π
or
π
/
2
show that
x
+
y
+
z
=
x
y
z
or
x
y
+
y
z
+
z
x
=
1
.
Q.
Prove that
sin
−
1
x
+
cos
−
1
x
=
π
2
for
|
x
|
≤
1
.
Q.
If
cot
−
1
(
1
x
)
+
cos
−
1
(
−
x
)
+
tan
−
1
x
=
π
and
sin
−
1
x
<
0
,
then the value of
(
1
−
x
2
)
3
/
2
x
2
is
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a)
s
i
n
−
1
(
1
−
x
)
−
2
s
i
n
−
1
x
=
π
/
2
.
(b) If
s
i
n
−
1
x
+
s
i
n
−
1
(
1
−
x
)
=
c
o
s
−
1
x
, then prove that x is equal to
0
,
1
/
2
.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Explore more
Domain and Range of Basic Inverse Trigonometric Functions
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app