1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties Derived from Trigonometric Identities
If x>0, y>0, ...
Question
If x > 0, y > 0, xy > 1, then tan
-1
x + tan
-1
y = _____________________.
Open in App
Solution
We know
tan
-
1
x
+
tan
-
1
y
=
π
+
tan
-
1
x
+
y
1
-
x
y
, if x > 0, y > 0 and xy > 1
If x > 0, y > 0, xy > 1, then tan
−1
x + tan
−1
y =
π
+
tan
-
1
x
+
y
1
-
x
y
.
Suggest Corrections
8
Similar questions
Q.
STATEMENT 1 : There is no triangle
A
B
C
for
A
=
t
a
n
−
1
2
,
B
=
t
a
n
−
1
3
.
STATEMENT 2:
lf
x
>
0
,
y
>
0
and
x
y
>
1
then
t
a
n
−
1
x
+
t
a
n
−
1
y
=
π
+
t
a
n
−
1
(
x
+
y
1
−
x
y
)
Q.
If x < 0, y < 0 such that xy = 1, then write the value of tan
−
1
x + tan
−1
y.
Q.
If
x
>
0
,
y
>
0
,
z
>
0
,
x
y
+
y
z
+
z
x
<
1
and if
tan
−
1
+
tan
−
1
y
+
tan
−
1
z
=
π
then
x
+
y
+
z
=
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
then for for x,
[
2
c
o
s
−
1
c
o
t
(
2
t
a
n
−
1
x
)
]
=
0
.
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a) If
t
a
n
−
1
(
x
+
2
x
)
−
t
a
n
−
1
4
x
−
t
a
n
−
1
(
x
−
2
x
)
=
0
then
x
=
.
.
.
.
.
.
.
.
.
.
or
x
=
.
.
.
.
.
.
.
.
(
x
ϵ
R
)
(b) If
s
i
n
−
1
x
+
s
i
n
−
1
y
=
2
π
/
3
c
o
s
−
1
x
−
c
o
s
−
1
y
=
π
/
3
then
x
=
.
.
.
.
.
.
.
.
,
y
=
.
.
.
.
.
.
.
(c) It
t
a
n
−
1
y
=
4
t
a
n
−
1
x
,
(
|
x
|
<
t
a
n
π
8
)
, then
express y as an algebraic function of x, Also deduce that
t
a
n
(
π
/
8
)
is a root of
x
4
−
6
x
2
+
1
=
0
.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Property 5
MATHEMATICS
Watch in App
Explore more
Properties Derived from Trigonometric Identities
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app