If x>0,y>0,z>0,xy+yz+zx<1 and tan-1x+tan-1y+tan-1z=Ï€, then x+y+z is equal to.
0
xyz
3xyz
Explanation for the correct answer:
To find the value of x+y+z:
Given,
tan-1x+tan-1y+tan-1z=π⇒tan-1x+tan-1y=π-tan-1z⇒tan-1x+y1-xy=tan-1-z[∵tan-1a+tan-1b=tan-1(a+b)1-ab,andπ-tan-1a=tan-1-a]⇒x+y=-z1-xy⇒x+y+z=xyz
Hence, the correct option is B.