If x=−13 is the zero of the polynomial p(x)=27x3−ax2−x+3, then value of a.
We have p(x)=27x3−ax2−x+3
x=−13 is a zero of polynomial of p(x)
So p(−13)=0
⇒27×(−13)3−a(−13)2−(−13)+3=0
⇒−2727−a9+13+3=0
⇒−1−a9+3+13=0
⇒2+13=a9
⇒73=a9
⇒7×93=a
⇒7×3=21=a
So at a=21,x=−13 is a zero of polynomial of p(x)=27x3−ax2−x+3