If x=1+a2,y=1+b2,z=1+c2 and (a+b+c)2=0, then ab + bc + ca =
a = 0, b = 1, c = -1. x = 1, y = 2, c = 2. ab + bc + ca = -1. Only option a) satisfies
Alternatively: -
Given
x=1+a2,⇒a2=x−1
y=1+b2,⇒b2=y−1
z=1+c2,⇒c2=z−1 and (a+b+c)2=0
As we know, (a+b+c)2=a2+b2+c2+2(ab+bc+ca)
Put the given values.
0 = (x - 1) + (y - 1) + (z - 1) + 2(ab + bc + ca)
(ab + bc + ca) = 3−(x+y+z)2