If x=1+a+a2+a3+.... to ∞(|a|<1) and y=1+b+b2+b3+... to ∞(|b|<1) then1+ab+a2b2+a3b3+... to ∞=xyx+y−1
If x = 1 + a + a2 .......... to ∞ (|a|<1), y = 1 + b + b2 ......... to ∞ (|b| < 1), then Z = 1 + ab + a2 b2 + a3 b3..... to ∞ is
If a, b, c are in G.P., prove that:
(i) a(b2+c2)=c(a2+b2)
(ii) a2b2c2(1a3+1b3+1c3)=a3+b3+c3
(iii) (a+b+c)2a2+b2+c2=a+b+ca−b+c
(iv) 1a2−b2+1b2=1b2−c2
(v) (a+2b+2c)(a−2b+2c)=a2+4c2.