If X=1+a+a2+....∞, where |a| < 1 and y=1+b+b2+.....∞ where |b| <1,
prove that 1+ab+a2b2+.....∞xyx+y−1
We have, x = 1+ a+a2+....∞
∴x=11−a[∵sum of infinite GP isS∞=a1−r]
1−a=1x⇒a=1−1x ....(i)
y=1+b+b2+....∞ ⇒y=11−b
1−b=1y⇒b=1−1y
1+ab+a2b2+....∞=11−ab [∵S∞−11−r]
1+ab+a2b2+....∞=11−(1−1x)(1−1y)=11−(x−1)(y−1)xy
=xyxy−xy+x+y−1=xyx+y−1