If (x+1) and (x−1) are the factors of x4+ax3−3x2+2x+b then find the values of a and b.
Open in App
Solution
Let p(x)=x4+ax3−3x2+2x+b ∵(x+1) is a factor of p(x) ∴p(−1)=0 ⇒(−1)4+a(−1)3−3(−1)2+2(−1)+b=0 ⇒1−a−3−2+b=0 ⇒−a+b=4 .........(i) Also (x−1) is a factor of p(x) ∴p(1)=0 ⇒(1)4+a(1)3−3(1)2+2(1)+b=0 ⇒1+a−3+2+6=0 ⇒a+b=0 ............(ii) Solving (i) and (ii), we get 2b=4
⇒b=2 Substituting b=2 in (ii), we get a+2=0⇒a=−2 Hence, a=−2,b=2