If x1 and x2 are the solution of the equation x3log310x−23log10x=1003√10, then which of the following is true?
x3log310x−23log10x=1073
Taking log both sides on base 10,⇒(3log310x−23log10x)log10x=73[∵logam=mloga&logaa=1]
Substitute log10x=t⇒3t4−23t2=73⇒9t4−2t2−7=0
⇒(9t2+7)(t2−1)=0∴t=±1⇒log10x=±1⇒x=10±1
⇒x=10,110∴x1.x2=1,logx2x1=−1,log(x1.x2)=0Ans: A,C,D