If x1 and x2 are two distinct roots of the equation acosx+b sinx=c, then tanx1+x22 is equal to :
acosx+bsinx=c
⇒(1−tan2(x2)1+tan2(x2))+b(2tan(x2)1+tan2(x2))=c
⇒(c+a)tan2(x2)−2btan(x2)+(c−a)=0
⇒tan(x12)+tan(x22)=2bc+a
and
tan(x12).tan(x22)=c−ac+a
Hence,
tan(x1+x22)=tan(x12)+tan(x22)1−tan(x12).tan(x22)=2bc+a1−c−ac+a=ba