If x1 and x2 are two distinct solutions of the equation log5(log64|x|+(25)x−12)=2x, then
x1=2x2
x1+x2=0
x1=3x2
x1x2=64
log5(log64|x|+(25)x−12)=2x
⇒log64|x|+(25)x−12=(25)x
⇒log64|x|=12
⇒|x|=8
⇒x=−8,8
If x1,x2,x3,x4 are four positive real numbers such that x1+1x2=4, x2+1x3=1, x3+1x4=4 and x4+1x1=1, then