The correct option is C -11
Let f(x)=2x3+mx2–x–n
Also, (x – 1) and (x + 2) are factors of f(x).
By factor theorem, f(1) = 0 and f(–2) = 0.
∴f(1)=2(1)3+m(1)2–1–n=0
⇒2+m–1–n=0
⇒m–n+1=0 …..(i)
Also, f(–2) = 2(–2)3+m(–2)2–(–2)–n=0
⇒–16+4m+2–n=0
⇒4m–n–14=0 …..(ii)
Subtracting (i) and (ii), we get:
(4m–n–14)–(m–n+1)=0
⇒3m–15=0
⇒m=5
Substituting m = 5 in (i), we get:
5–n+1=0
⇒n=6
∴m2–n2=(5)2–(6)2
=25–36=–11
Hence, the correct answer is option (3).