The correct options are
A x=110 is a solution for the equation
B x=2 is a solution for the equation
|x−1|((log10x)2−log10x2)=|x−1|3
For the log to be defined,
x>0
If am=a3
Then
(i) m=3(log10x)2−log10x2=3
Assuming t=log10x
⇒t2−2t−3=0
⇒(t−3)(t+1)=0
⇒log10x=−1,3
⇒x=10−1,103
(ii) a=1|x−1|=1⇒x=0,2⇒x=2 (∵x>0)
(iii) a=0,m≠0
a=0⇒|x−1|=0⇒x=1
Checking the value of m at x=1,
m=(log101)2−log1012=0
Which contradict our assumption
Therefore the required values are
x=110,2,103