If x=1+log 2−log 5, y=2 log 3 and z=log a−log 5; find the value of a, if x+y=2z.
x=1+log 2−log 5
x=log10+log 2−log 5
x=log 10×2−log 5
= log 205
We have
y=2 log 3
= log 32
= log 9
Also, we have
z=log a−log 5
= log a5
x+y=2z
log 4+log 9=2 loga5
log 4+log 9=loga225
log 36=loga225
loga225=36
a2=36×25
a=30