If x1, x2 are the roots of ax2 + bx + c = 0 and x1+d, x2+d are the roots of px2 + qx + r = 0, d ≠ 0 then
d=bp−aq2ap
ax2 + bx + c = 0 has roots x1, x2
x1+x2=−ba, x1x2=ca|x1−x2|=√(x1+x2)2−4x1x2=√b2a2−4ca=√b2−4ac|a| ...(1)
px2 + qx + r = 0 has roots x1+d1 x2+d
∴ (x1+d)+(x2+d)=−qp, (x1+d)(x2+d)=rp
∴ |x1−x2|=1|p|√q2−4pr ...(2)
From (1) & (2)
⇒ b2−4aca2=q2−4prp2Now 2d=−−qp−(x1+x2)2d=−aq+bpap∴ d=−aq+bp2ap