The correct option is B 23
Assuming three vectors as
→n1=(x1,x2,x3)→n2=(y1,y2,y3)→n3=(1,1,1)
Now,
x1+x2+x3=0⇒→n1⋅→n3=0y1+y2+y3=0⇒→n2⋅→n3=0x1y1+x2y2+x3y3=0⇒→n1⋅→n2=0
∴→n1,→n2 and →n3 are mutually perpendicular vectors.
Now, let →n4=(1,0,0)
x21x21+x22+x23=⎛⎝→n1⋅→n4|→n1||→n4|⎞⎠2y21y21+y22+y23=⎛⎝→n2⋅→n4|→n2||→n4|⎞⎠213=⎛⎝→n3⋅→n4|→n3||→n4|⎞⎠2
They are squares of the projections of vector →n4=(1,0,0) on →n1,→n2,→n3 respectively and hence,
x21x21+x22+x23+y21y21+y22+y23+13=1∴x21x21+x22+x23+y21y21+y22+y23=23