If x1, x2, x3, x4 are roots of the equation x4–x3 sin2β+x2cos2β–xcosβ–sinβ=0 then ∑4i=1 tan−1 xi is equal to
π2−β
We have
S1=∑x1=sin2β
S2=∑x1x2=cos2β
S3=∑x1x2x3=cosβ
S4=x1x2x3x4=–sinβ
So that ∑4i=1 tan−1 xi=tan−1S1−S31−S2+S4
=tan−1sin 2β−cosβ1−cos 2β−sinβ
=tan−1cosβ(2 sin β−1)sin β(2 sin β−1)
=tan−1 cot β=tan−1(tan(π2−β))
=π2−β