The correct option is
B 30x1,x2,x3,....,x4001 are in AP
then, 1x1,1x2,1x3,....,1x4001 are in HP
Given 1x1x2+1x2x3+1x3x4+.....+1x4000x4001=10
Dividing and multiplying by common difference d
1x1x2+1x2x3+1x3x4+.....+1x4000x4001=10ddx1x2+ddx2x3+ddx3x4+.....+ddx4000x4001=101d[x2−x1x1x2+x3−x2x2x3+x4−x3x3x4+.....+x4001−x4000x4000x4001]=101d[1x1−1x2+1x2−1x3+1x3−....+1x4000−1x4001]=101d[1x1−1x4001]=101dx4001−x1x4001x1=10(1)
an=a+(n−1)d nth term formula
x4001=x1+(4001−1)dx4001−x14000=d(2)
From (1),(2)
d×4000d=10(x4001x1)400=x4001x1(x1−x4001)2=(x1+x4001)2−4x1x4001(x1−x4001)2=(50)2−4×400(x1−x4001)2=2500−1600=900(x1−x4001)=±√900=±30|x1−x4001|=30