If x1,x2,x3,...,xn are in A.P. whose common difference is α, then the value of sinα(secx1secx2+secx2secx3+...+secxn−1+secxn) is
A
sin(n−1)αcosx1cosxn
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
sinnαcosx1cosxn
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sin(n−1)αcosx1cosxn
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
sinnαcosx1cosxn
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Asin(n−1)αcosx1cosxn Given x1,x2,x3,........,xn are in A.P and, xn−xn−1=................=x3−x2=x2−x1=α Now, sinα(secx1.secx2+secx2.secx3+...........+secxn−1.secxn) =sin(x2−x1)cosx1.cosx2+sin(x3−x2)cosx2.cosx3+.......+sin(xn−xn−1)cosxn−1.cosxn =sinx2.cosx1−cosx2.sinx1)cosx1.cosx2+sinx3.cosx2−cosx3.sinx2)cosx2.cosx3+.......+sinxn.cosxn−1−cosxn.sinxn−1)cosxn−1.cosxn =sinxncosxn−sinx1cosx1=sin(xn−x1)cosx1.cosxn=sinα(n−1)cosx1.cosxn Hence, option 'A' is correct.