If x1,x2,....,xn are n values of a variable X and y1,y2,....yn are n values of variable Y such that yi=axi+b,i=1,....,n. then write Var(Y) interms of Var (X).
¯¯¯y=1n{∑yi}=1n{∑axi+b}=a¯¯¯x+b\
∴yi−¯¯¯y=axi+b−a¯¯¯x−b=a(x1−¯¯¯x)
var(Y)=1n{∑(yi−¯¯¯y)2}=1n{∑a2(xi−¯¯¯x)2}=a2[1n{∑(xi−¯¯¯x)2}]=a2[var(x)]