If x1,x2,......,xn are n variables such that ∑ni=1(2xi+5)=1600 and ∑ni=1(x2i−4)=900. If ∑ni=1(xi+1)2=250 then the value of n is
A
15
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
20
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
10
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C 10 Given: ∑ni=1(2xi+5)=1600, ∑ni=1(x2i−4)=900 and ∑ni=1(xi+1)2=250
Consider ∑ni=1(2xi+5)=1600 ⇒2∑ni=1xi+5n=1600
( ∑ni=1a=an, where a is any constant) ⇒2∑ni=1xi=1600−5n..........(i)
Also ∑ni=1(x2i−4)=900 ⇒∑ni=1x2i−4n=900 ∑ni=1a=an, where a is any constant) ⇒∑ni=1x2i=900+4n........(ii)
And, ∑ni=1(xi+1)2=250 ⇒∑ni=1(x2i+2x1+1)=250n ⇒∑ni=1x2i+2∑ni=1x1+n=250n ∑ni=1a=an, where a is any constant) ⇒(900+4n)+(1600−5n)+n=250n [from (i) and (ii)] ⇒2500=250n ⇒n=10