If x+1x=5, find the value of x2+1x2.
Compute the required value.
It is given that, x+1x=5.
On squaring both sides, we get;
x+1x2=25⇒x2+1x2+2=25⇒x2+1x2=23 [Since, (a+b)2=a2+b2+2ab]
Therefore, the value of x2+1x2 is 23.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.