wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (x1,y1) and (x2,y2) are the solution of the system of equation
log225(x)+log64(y)=4
log225xlogy(64)=1,
then find the value of log30(x1y1x2y2).

Open in App
Solution

letlog225x=Pandlog64y=Q
P+Q=4=>P=4Q
andP1Q=1
PQ=1+Q
(4Q)Q=1+Q
4QQ2=1+Q
Q23Q+1=0
productofroots=1,sum=3 Now, P+Q=4
Q=4PPQ=1+Q
P(4P)=1+4P
4PP2=5P
P25P+5=0
productofroots=5,sum=5
Thus,log64y1+log64y2=3
y1y2=643
andlog225x1+log225x2=5
y1y2=643
andlog225x1+log225x2=5
x1x2=(225)5
Now,
x1x2y1y2=643.(225)5=(2)3.(15)10
x1x2y1y2=216.310.510=28.3010
log30(x1x2y1y2)=8log302+10

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon