If x+1x=3, calculate x2+1x2,x3+1x3 and x4+1x4
In the given problem, we have to find the value of x2+1x2,x3+1x3 and x4+1x4
Given: x+1x=3,
We shall use the identity (a+b)2=a2+b2+2ab
Here putting, x+1x=3,
⇒(x+1x)2=32
⇒x2+1x2+2×x×1x=9
⇒x2+1x2+2=9
⇒x2+1x2=9−2=7
∴x2+1x2=7 ....(i)
Again squaring on both sides we get,
⇒(x2+1x2)2=72
⇒x4+1x4+2×x2×1x2=49
⇒x4+1x4+2=49
⇒x4+1x4=49−2
∴x4+1x4=47...(ii)
Consider, x+1x=3,
Again cubing on both sides we get,
⇒(x+1x)3=33,
We shall use identity (a+b)3=a3+b3+3ab(a+b)
⇒x3+1x3+3×x×1x×(x+1x)=27
⇒x3+1x3+3(3)=27
⇒x3+1x3=27−9
∴x3+1x3=18...(iii)