If x2−10x+17<cos−1(cos4)+tan−1(tan5)∀x∈Z, then the number of integral value(s) of x is
Open in App
Solution
Given : x2−10x+17<cos−1(cos4)+tan−1(tan5)
We know that cos−1(cos4)=2π−4;π≤x≤2π tan−1(tan5)=5−2π;3π2<x<2π
So, inequality becomes : x2−10x+17<2π−4+5−2π ⇒x2−10x+16<0 ⇒(x−2)(x−8)<0 ⇒x∈(2,8) ∴ Five integral values are 3,4,5,6,7.