If x2+2ax+10−3a>0 for each x∈R, then
−5<a<2
a>5
a<−5
2<a<5
x2+2ax+10−3a>0 ∀ x∈R
⇒(x+a)2−(a2−10+3a)>0 ∀ x∈R For Δ>0,
a2+3a−10<0
⇒(a+5)(a−2)<0
⇒−5<a<2
If x2+2ax+10−3a>0 for all x ∈ R, then