If x2−2xcosθ+1=0, then the value of x2n−2xncosnθ+1,n∈N, is equal to
x2−2xcosθ+1=0
∴x=2cosθ±√4cos2θ−42=cosθ±isinθ
Let us consider,
x=cosθ+isinθ
Now,
x2n−2xncosθ+1
=cos2nθ+isin(2nθ)−2(cosnθ+isin(nθ))cosnθ+1
=cos2nθ−2cos2θ+1+isin2nθ−2isin(nθ)cosnθ
=0
If
we replace θ by −θ, we will obtain the same result
for the other value of x.
Hence, option C is the correct
answer