If x2+4y2−8x+12=0 is satisfied by real values of x & y, then y∈
[−1,1]
Given : x2+4y2−8x+12=0
⇒x2−8x+4(y2+3)
Also given that it only satisfy for real values.
∴D≥0
⇒(8)2−4⋅4(y2+3)≥0
⇒64−16y2−48≥0
⇒−16y2+16≥0
⇒16y2 −16≤0
⇒y2−1≤0
⇒(y+1)(y−1)≤0
⇒−1≤y≤1
Hence, y∈[−1,1]