The correct option is D H.P.
Given, x2+9y2+25z2=15yz+5zx+3xy
(x)2+(3y)2+(5z)2−(x)(3y)−(3y)(5z)−(x)(5z)=0
12[2(x)2+2(3y)2+2(5z)2−2(x)(3y)−2(3y)(5z)−2(x)(5z)]=0
12[(x−3y)2+(3y−5z)2+(x−5z)2]=0
⇒x−3y=0,3y−5z=0,x−5z=0
1x=13yand53y=1zand15z=1x
1x+1z=13y+53y=2y
∴1x,1y,1z
are in A.P. and x,y,z are in H.P.