If x2 - ( a - 3)x + a = 0 has atleast one positive root then :
a (- , 0 ) (9, ).
x2- (a-3)x+a=0 ......(1)
(1) has at least one positive root.
∴ roots are real ⇒ (a−3)2−4a≥0
⇒ a ≤1 or a≥9 ....(2)
let both roots be negative or zero. Then
f(0) = a ≥ 0 and α + β = a - 3 ≤ 0 i.e., a ≤ 3 .
∴ At least one root is positive for
(- ∞,1 ] ∪ [9 , ∞ ) - [0,3]
i.e., when a ∈ (- ∞ , 0 ) ∪ (9, ∞).