The correct option is A (−∞,0)∪[9,∞)
Real roots exist when D≥0
⇒(a−3)2−4a≥0
⇒a2−10a+a≥0
⇒(a−9)(a−1)≥0
⇒a∈(−∞,1]∪[9,∞)
Case 1: Both roots are positive
⇒D≥0, a−3>0, a>0
⇒a∈(−∞,1]∪[9,∞), a>3, a>0
⇒a∈[9,∞) ⋯(1)
Case 2: When exactly one root is positive
⇒D≥0, a<0
⇒a∈(−∞,1]∪[9,∞), a<0
⇒a∈(−∞,0) ⋯(2)
When one root is 0, then a=0
x2+3x=0⇒x=0,−3
So, a=0 not possible.
From (1) and (2)
⇒a∈(−∞,0)∪[9,∞)