Given, (4y2−9x2)(16y4+36x2y2+81x4)
Using Identity,
a3−b3=(a−b)(a2+ab+b2)
Comparing given equation with identity we get,
∴(4y2)3−(9x2)3
=(4y2−9x2)((4y2)2+4y2×9x2+(9x2)2)
∴(4y2−9x2)(16y4+36x2y2+81x4)
=64y6−729x6
Substituting x=−2,y=1 we get,
=64(1)6−729(−2)6
=64(1)−729×64
=64−729×64
=64(1−729)
=64×−728
=−46592