If x2+ax+10=0 and x2+bx−10=0 have a common root, then a2−b2 is equal to
40
Let α be a common root, then
α2+αα+10=0
and α2+bα−10=0
from (i) - (ii),
(a−b)α+20=0 ⇒ α = −20a−b
Substituting the value of α in (i), we get
(−20a−b)2+a(−20a−b)+10=0
⇒400 - 20 a(a - b) + 10(a−b)2 = 0
⇒40 -2a2 + 2ab + a2 + b2 -2ab = 0
⇒a2 - b2 = 40