If x2+ax+10=0 and x2+bx−10=0 have a common root, then a2−b2 is equal to
Let α be a common root, then
⇒α2+αα+10=0⋯(i)
& α2+bα−10=0⋯(ii)
from (i) - (ii), we get:
(a−b)α+20=0⇒α=−20a−b
Substituting the value of α in (i), we get
(−20a−b)2+a(−20a−b)+10=0
⇒400−20a(a−b)+10(a−b)2=0⇒40−2a2+2ab+a2+b2−2ab=0⇒b2−a2=−40⇒a2−b2=40