If x2+1x2=51, find the value of x3−1x3.
x2+1x2=51
(x−1x)2=x2+1x2−2=51−2=49=(7)2∴ x−1x=7Cubing both sides(x−1x)3=(7)3⇒ x3−1x3−3(x−1x)=343⇒ x3−1x3−3×7=343⇒ x3−1x3−21=343⇒ x3−1x3=343+21=364∴ x3−1x3=364
Find the value of x3+1/x3,if x2+1/x2=14