Given: (x−2) is a factor of x5−3x4−ax3+3ax2+2ax+4.
Let, f(x)=x5−3x4−ax3+3ax2+2ax+4
∵(x−2) is a factor of
x5−3x4−ax3+3ax2+2ax+4;
then by factor theorem f(2)=0.
∵f(2)=0
⇒(2)5−3×(2)4−a×(2)3+3×a×(2)2+2a×(2)+4=0
⇒32−48−8a+12a+4a+4=0
⇒8a−12=0
⇒8a=12
∴a=128=32
Hence, the value of a is 32.