If x2+λx+1=0,λ∈(−2,2) and 4x3+3x+2x=0 have common root then c+λ can be
Given that,
x2+λx+1=0
On comparing that,
ax2+bx+c=0
Then,
a=1,b=λ,c=1
Now,
D=b2−4ac
D=λ2−4
But given that,
λ∈(−2,2)
⇒−2<λ<2
⇒0<λ2<4
⇒−4<λ2−4<0
Now,
x2+λx+1=0 is a factor of 4x3+3x+2c=0
So,
4x3+3x+2c=4x(x2+λx+1)−4λ(x2+λx+1)
4x3+3x+2c=(4x−4λ)(x2+λx+1)
On comparing coefficients of x1
Now,
3=4−4λ2
⇒4λ2=1
⇒λ2=14
⇒λ=±12
Now,
c+λ=±12
Hence, this is the answer.