The correct option is C θ=nπ,n∈I
Let 2cos2θx3+2x+sin 2θ=(x2+px+1)(ax+b)
On expanding the RHS term, and comparing the coefficient of x3 and the constant term with the LHS, we get
a=2cos2θ and b=sin 2θ
2cos2θx3+2x+sin 2θ=(x2+px+1)(2 cos2θx+sin 2θ)
On comparing coefficients of x and x2,
2=p sin 2θ+2 cos2θ⇒2 sin2θ=p sin 2θor p=tanθ ...(i)and 0=sin 2θ+2p cos2θ∴p=−tan θ ...(ii)
From Eqs. (i) and (ii),
tanθ=−tanθ2 tan θ=0tanθ=0⇒θ=nπ,n∈I