If x=2+√3, find the value of x3+1x3.
x=2+√3
1x=12+√3=1(2−√3)(2+√3)(2−√3)
(Rationalising the denominator)
=2−√3(2)2−(√3)2=2−√34−3=2−√3
∴x+1x=2+√3+2−√3=4
Cubing both sides,
(x+1x)3=(4)3
⇒x3+1x3+3(x+1x)=64
⇒x3+1x3+3×4=64
⇒x3+1x3+12=64
⇒x3+1x3=64−12=52
Hence x3+1x3=52