It is given that
x=2+√3. We find
x2 and
1x2 as follows:
x2=(2+√3)2=(2)2+(√3)2+(2×2×√3)(∵(a+b)2=a2+b2+2ab)=4+3+4√3=7+4√3
1x2=17+4√3=17+4√3×7−4√37−4√3(Rationalizing)=7−4√3(7+4√3)(7−4√3)=7−4√372−(4√3)2(∵(a+b)(a−b)=a2−b2)
=7−4√349−48=7−4√3
Now, we calculate x2+1x2 as shown below:
x2+1x2=7+4√3+(7−4√3)=7+4√3+7−4√3=14
Hence, x2+1x2=14.