x3=(2+√3)3
x3=23+(√3)3+3×2×√3(2+√3) [(a+b)3=a3+b3+3ab(a+b)]
x3=8+3√3+6√3(2+√3)
x3=8+3√3+12√3+18
x3=26+15√3
=(26+15√3)2+1(26+15√3)
=(26)2+(15√3)2+2×26×15√3(26+15√3) [(a+b)2=a2+b2+2ab]
=676+675+780√3(26+15√3)
=1351+780√3(26+15√3)
If (x+1x)=4, find the value of
(1) (x3+1x3)
(2) (x−1x)
(3) (x3−1x3)
If x−1x=3+2√2, find the value of x3−1x3.