If x=2+√3,xy=1, then find x2−x+y2−y
−3
2√3
−2
4√3
Given:x=2+√3,xy=1x2−x+y2−y=x2−x+xy2x−xy=x2−x+12x−1=2+√32−(2+√3)+12(2+√3)−1=(2+√3)−√3+12(2+√3)−1=(2+√3)−√3+13+2√3=−6−7√3−6+√3√3(3+2√3)=−(12+6√3)√3(3+2√3)=−6(2+√3)3(2+√3)=−63=−2.