If x2+y2=14 and xy=3, find the value of 2(x+y)2−5(x−y)2.
0
106
14
52
⇒2(x+y)2−5(x−y)2
=2(x2+y2+2xy)−5(x2−2xy+y2) =2x2+2y2+4xy−5x2+10xy−5y2 =−3x2−3y2+14xy =−3(x2+y2)+14xy =(−3×14)+(14×3) =−42+42 =0
If x2+y2=14 and xy=3, then find the value of 2(x+y)2−5(x−y)2.
If x2 + y2 = 14 and xy = 3, find the value of 2(x+y)2−5(x−y)2.
If x2+y2=47 and xy=192 then what is the value of 3(x+y)2+(x−y)2?