wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (x2+y2)2=xy Find dydx.

OR If x = a(2θsin2θ) and y = a (1cos2θ), find dydx when θ=π3.

Open in App
Solution

Here (x2+y2)2=xy 2(x2+y2){2x+2yy}=xy+y.14(x2+y2){x+yy}=xy+y 4x(x2+y2)+4y(x2+y2)y=xy+y{4y(x2+y2)x}y=y4x(x2+y2) dydx=y4x34xy24x2y+4y3x

OR We have x = a (2θsin2θ) and y = a (1cos2θ)
dydθ=a(22cos2θ)=2a(1cos2θ) and dydθ=a(0+2sin2θ)=2asin2θdydx=dydθ÷dxdθ=2asin2θ2a(1cos2θ)=2sinθcosθ2sin2θ=cotθAt θ=π3,dydx=cotπ3=13


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Method of Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon