If (x2+y2)2=xy Find dydx.
OR If x = a(2θ−sin2θ) and y = a (1−cos2θ), find dydx when θ=π3.
Here (x2+y2)2=xy ⇒2(x2+y2){2x+2yy′}=xy′+y.1⇒4(x2+y2){x+yy′}=xy′+y ⇒4x(x2+y2)+4y(x2+y2)y′=xy′+y⇒{4y(x2+y2)−x}y′=y−4x(x2+y2) ∴dydx=y−4x3−4xy24x2y+4y3−x
OR We have x = a (2θ−sin2θ) and y = a (1−cos2θ)
⇒dydθ=a(2−2cos2θ)=2a(1−cos2θ) and dydθ=a(0+2sin2θ)=2asin2θ∴dydx=dydθ÷dxdθ=2asin2θ2a(1−cos2θ)=2sinθcosθ2sin2θ=cotθAt θ=π3,dydx=cotπ3=1√3