The correct option is A 2
Lets take x=5cosθ,y=5sinθ
then Max(3x+4y)=Max[5(3cosθ+4sinθ)]
let sinx=35 and cosx=45
=Max[25sin(θ+x)]=25
So, log5[Max(3x+4y)]=log525=2
Or
Let f(x,y)=3x+4y be a function. So we have to find maxima of f(x,y) if x2+y2=25.
f=3x+4√25−x2
For maxima f′(x) must be 0.
⇒3−4x√25−x2=0
⇒x2=9
⇒x=±3
and so y=±4
Here we can see f(x,y) is max at (3,4) and min at (−3,−4)
So, log5[Max(3x+4y)]=log525=2