If x2+y2=25, then the maximum value of log5|3x+4y| is
Open in App
Solution
x=5cosθ,y=5sinθ log5|3x+4y|=log5|15cosθ+20sinθ| =log55|3cosθ+4sinθ| =1+log5|3cosθ+4sinθ| ∵3cosθ+4sinθ∈[−√32+42,√32+42] i.e., [−5,5] ⇒|3cosθ+4sinθ|∈[0,5] So, the maximum value of log5|3x+4y|=1+log55=2