If x2+y2=29 and xy=2, find the value of
(i) x+y (ii) x−y (iii) x4+y4
x2+y2=29, xy=2(i) (x+y)2=x2+y2+2xy=29+2×2=29+4=33∴ x+y=±√33(ii) (x−y)2=x2+y2−2xy=29−2×2=29−4=25∴ x−y=±√25=±5(iii) x2+y2=29Squaring on both sides,(x2+y2)2=(29)2⇒ (x2)2+(y2)2+2x2y2=841⇒ x4+y4+2(xy)2=841⇒ x4+y4+2(2)2=841 (∵ xy=2)⇒ x4+y4+2×4=841⇒ x4+y4+8=841⇒ x4+y4=841−8=833∴ x4+y4=833